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Abstract 
 

Insights gleaned from scientific analysis of complex problems risk being lost unless 
they are successfully communicated and understood by those making decisions. 
Traditionally scientists have focussed on the technical analysis of the problem, and 
have left it to others to ensure uptake and application of their work. Yet for many 
years now studies across a range of disciplines have pointed to some wide-reaching 
and fundamental barriers to wise decision-making in complex situations. These 
barriers have more to do with human cognition and psychology than the physical 
complexity of the problem at hand. We draw on this literature and recent preliminary 
studies to highlight the value of scientists paying more attention not only to the 
dynamical analysis but also to the human, organisational and cognitive dimensions of 
complex problems. 

  

1  Introduction 
 
Is it possible for humans to manage a complex system? The belief that it is possible to 
meaningfully intervene in complex situations underlies our routine daily actions: we 
try to manage economies, ecosystems, nations, wars and our daily lives. The literature 
from many disciplines researching this topic presents a less clear picture.  Some 
complex system science literature stresses the unpredictability of complex systems 
(e.g. deterministic chaos) yet an assumption of predictability underpins many 
management actions and interventions. Psychology and cognitive science characterise 
the limitations humans encounter in dealing with apparently simple problems, a topic 
we address in this paper. Artificial Intelligence has for decades attempted to devise 



formal, algorithmic approaches to interact with the real world with limited success 
(Dreyfus, 2007; McCarthy, 2007); more recently, it has directed its effort towards 
more flexible and adaptive approaches, often inspired by how natural systems 
compute and evolve, but still no one would place an economy, an ecology, a legal 
system or a war solely in the hands of a computer. Despite cognitive limitations, when 
it comes to managing natural systems we trust a human decision maker more than an 
automated one. Expertise takes a very long time to develop (Ericsson, 1993) and only 
a small percentage of people are able to develop the cognitive skills needed to address 
complex causal relations (Camerer et al., 1991); do all people in decision making and 
management positions belong to this elite?  And did they all go through the 
supposedly needed 10,000 hours / 10 years of expertise development? What about the 
others? Are they unsuited to decision making? 
 
In this paper we discuss recent literature and some experiments we have carried out or 
replicated. The work suggests that a) most humans struggle when dealing with the 
characteristic features of complex systems, b) ‘experts’ are not immune to such 
difficulties and c) these difficulties are not necessarily obvious and may be masked by 
the appearance of purposeful, informed decision making. We focus on the role of 
computer modelling in addressing some of these limitations and we discuss some 
initial results in this direction. 

2  Some assumptions 
 
Our analysis is based on a number of assumptions and on our views on the nature of 
systems and of complexity. The first assumption is that managing (purposefully 
intervening, controlling, responding to events) requires understanding and 
understanding implies the ability to predict the consequences of actions. This is a 
contentious issue in complex system science, mostly due to disagreements on what is 
meant by ‘prediction’. An in depth discussion in this topic is beyond the scope of this 
paper however several summary points are important here:  
 

1) prediction means being able to anticipate limits on the expected system 
behaviour. For example, while it is widely known that weather forecasts are 
not reliable past 5-6 days, this does not mean that we have no predictability at 
all on the weather in 3-4 weeks time; no one would believe that the 
temperature in Tucson, Arizona in August could be 40○C or -40○C with equal 
probability. As a result no one would travel to Tucson in August with a ski 
jumper. The same reasoning applies to most systems for which predictability 
depends on time scales and resolution (Israeli and Goldenfeld, 2004); 

2) managing implies intervening, controlling or responding to events, either to 
alter system behaviour according to our desire or to prepare for anticipated 
consequences. This, in turns, also requires some form of prediction on the 
likely dynamics of the event; 

3) prediction requires some sort of system understanding, which we can describe 
as a (mental or formal) model used to carry out a prediction of what a system 
may possibly do in the future. The better the model, the better we can alter or 
prepare for the future (Crutchfield, 1994);  

4) similarly, only by carrying out a prediction and checking to what extent it 
matches future observations can we judge whether an adopted model is 
effective. Modelling and predicting are two aspects of the same process.  



 
The above premises (prediction requires anticipation, anticipation requires system 
understanding, system understanding requires effective models) imply that managing 
involves using a (mental or formal) model in order to explore possible system 
behaviours and their consequences and take a decision accordingly. Crucially, we also 
assume that managing and predicting can be learned, that models can represent 
systems in a manner appropriate for learning and training and perhaps more 
controversially, we suggest that computer models can be used to articulate the 
conceptualisation of a system and simulate consequences of that conceptualisation.  
 
The second assumption we base our work on is that, for training purposes, it is useful 
to identify different features or components of a system; these features or components 
are not intended as subsystems, rather as contributors to the overall system 
complexity; for example, under this framework the presence of a feedback loop is an 
feature of a system behaviour which contributes to and characterises its complexity. 
We suggest that these features need to be understood first individually and then in 
combination in order to reach the global system understanding required for wise 
management. 
 
The above statement is also contentious and appears to contradict the crucial tenet of a 
‘system’ approach, that is, the necessity to consider a system as a whole and to 
account at once for all interactions within subcomponents and between the system and 
the outside world. We justify our approach from a training perspective. Firstly, we 
suggest that for a manager facing a real-world decision, complexity manifests itself in 
different forms and that different skills are required for each type. We propose an 
approximate classification of the types of complexity and discuss what kinds of 
approaches are available or can be developed to address each type. Secondly, we 
suggest that the processes or features responsible for typical complex system 
behaviours can also be identified, studied in isolation and progressively recombined 
in order to train managers to detect, observe and address them at increasing level of 
complexity. Some initial tools we developed for this task are discussed below.  
 

3  Four types of complexity 
 
It is a common experience that problems may appear equally complex despite being 
of totally different nature: to what extent the complexity of a quantum system is 
similar to the complexity of a social network is not obvious and using the same word 
to describe both may confuse rather than help any analysis. Complexity manifests 
itself in different forms and for the purpose of understanding its impact on decision 
making we find useful to subdivide it into four types: dynamical, organisational, 
cognitive and behavioural or inter-relational.     
 
In our proposed classification, the dynamical complexity attempts to describe the 
behaviour of the system in terms of features like system states, phase transitions, 
tipping points, hysteresis, oscillations, attractors and the like. This is the realm of 
mathematical or statistical description but the concept can be applied equally well to 
physical, biological, ecological and social components.  
 



The organisational complexity attempts to describe the network of interactions 
which characterises a system. This also applies to the physical, ecological and social 
components and is represented, for example, by the political fabrics humans build to 
govern and by the interactions between biological species and energy sources which 
constitute an ecosystem. This is the realm of network analysis, ecological modelling, 
organisation theory and social science; it studies the paths of communication used to 
process information and take decisions as well as the constraints which individuals, 
groups and biological species place upon one another. Organisational complexity is 
related to dynamical complexity in two ways: the dynamic behaviour possible in a 
system is usually conditional on the network structure of interactions between system 
components; and the network of interactions itself may evolve under a set of dynamic 
processes. 
  
The cognitive complexity attempts to describe the challenge an individual faces in 
trying to mentally organise and process the information needed to understand and 
interact with the system. This challenge is twofold: it includes the need to deal with an 
immense amount of information and at the same time with an even greater level of 
uncertainty. It has a contradictory flavour, since a decision maker is aware of being 
unable to account for all available information and at the same time wishes to have 
more; he/she continually struggles between the conflicting needs to simplify and to 
specify further. The way humans cope with this challenge and how they can be helped 
in this task is the topic of one of the experiments we carried out. 
 
For behavioural or inter-relational complexity, we specifically mean the behavioural 
and psychological skills which allow some individuals to be more effective at 
bringing about change than others: we refer loosely to the skills which allowed 
Barack Obama to convince millions ‘yes we can’ or Al Gore to convince the world 
that climate change is real. We suggest this is a type of complexity, rather than merely 
a psychological feature, because of the intrinsic dependence on the structure, 
dynamics, trends and potential existing in a society (i.e. the conditions necessary for 
such leaders to emerge and succeed). Within complex system parlance, these are 
typical ingredients which lead to tipping points or phase changes in social dynamics.    
 
It is important to notice that the above classification does not try to ‘reduce’ or 
compartmentalise a system: it does neither divide the system into physical, biological 
or social components nor does it divide the system spatially. Rather it corresponds to 
the mental challenges an observer (a stake-holder, a scientist or a decision maker) has 
to address in order to understand how a system works and what makes it complex for 
the observer (Crutchfield, 1994).  
 
In the rest of the paper we describe some initial work we have done addressing 
dynamical, organisation and cognitive complexity; at this stage we have not carried 
out any analysis on inter-relational complexity.  
 

4  Facing dynamical complexity 
 

4.1 Stocks & flows 
 



We all know that predicting the weather is as difficult as is predicting the stock 
market and earthquake occurrences. These are examples of dynamical complexity, 
challenging even to experts. We also all know that these problems are different from 
predicting the fluctuations in our bank account if we know how much we earn and 
how much we spend, or the fluctuations in the water level of a dam if we know the 
rates of inflow and outflow. The latter are linear problems, which involve only 
addition and subtraction. We may not be good at counting but given pen and paper we 
expect we can sort them out; at the very least we expect experts will find such 
problems trivial.  
 
In fact, this is not the case. In a series of experiments (Sweeney and Sterman, 2000; 
Sterman and Sweeney, 2002; 2007; Sweeney and Sterman, 2007; Sterman, 2008) 
Sterman and colleagues from MIT show that even individuals with high level of 
education (including training in mathematics) fail at ‘simple’ questions involving 
stock and flow dynamics. Here the word ‘simple’ has several meanings: a) it is linear, 
so it can be answered with high-school (primary school in fact) arithmetic b) it 
contains no feedbacks and c) it addresses everyday real-world scenarios. The 
experiments from the MIT group are exhaustive and pose the same questions dressed 
in different ways: filling a bath-tub, managing an interest-free bank account, storing 
CO2 content in the atmosphere, melting ice-sheets and calculating the number of 
people in a supermarket. All questions can be reduced to a common simple concept: 
the amount of a quantity in a container depends on the difference between what is put 
in and what is taken out. According to the experiments well over two thirds of these 
mathematically proficient, highly trained, high performing individuals fail at the tests 
(Sterman, 2008). Higher figures occur in the general public. Sterman and colleagues 
make sure this is a conceptual problem and is not due to misunderstanding the 
questions; they ask the questions in both graphical and English form and use different 
representations, which do not significantly change the outcome (Cronin et al., 2009).  
 
As naturally sceptical scientists we did not believe the results were universally true, 
and we assumed that experts, at least, would do better. We chose two of the published 
questions and ran them in exactly the same form on 4 different groups of 
professionals with expertise somehow related to the analysis and management of 
ecological systems; these groups consisted of modellers, biologists, ecologists, 
physicists, complex system scientists, managers, and stake-holders active in tourism 
development or ecological sustainability. To our amazement, the results matched the 
ones from Sterman and colleagues almost exactly.  
 
Sterman and colleagues suggest that this unexpected phenomenon is due to human 
tendency to match patterns: typically subjects assume the dynamics of the stock 
matches the one of the flow; mathematically, this means not understanding the 
difference between a derivative and an integral. The implications of this result are 
considerable: if one does not understand the accumulation process, he/she may 
under/over spend (creating financial damage), under/over exploit (creating 
environmental damage), under/over emit (creating pollution damage) etc. 
 
Stock and flow relations are the consequence of conservation of mass, a law which all 
physical systems follow as do economic systems at the micro level: misunderstanding 
stocks and flows therefore implies that system management will fail. Said differently, 



understanding and managing stock & flows is a not sufficient, but necessary, 
requirement to manage a complex system. 
 
A natural question to ask is why, if misunderstanding stocks and flows is so 
dangerous and yet so wide-spread, many more systems in our hands do not collapse 
irreversibly? There are a few possible answers. One is that the task can be delegated: a 
modeller may write a correct model by using the correct equations for conservation of 
mass and let the equations do the exact work; a manager may delegate some basic 
accounting to a technician who performs the exact work. Another possible view is that 
in fact many systems collapse for this very reason: many people run of out money, out 
of gas, out of water or over-pollute; to what extent this is due to a failure to 
understand stocks and flows may be hard to evaluate if a proper record of decision 
making is not available. 
 
It is also important to ask what can be done about it. Experiments by Sterman and his 
colleagues suggest that a traditional technical education may not be enough, given 
that their subjects had studied calculus (and some of our subjects had a PhD in a 
scientific discipline). Our approach has been to develop simple numerical models to 
train subjects by letting them play with stock and flow dynamics and providing 
feedback on their performance. The idea is not novel, of course, and has considerable 
precedence in the literature. From a cognitive perspective, the purpose of the training 
is to use a ‘correct’ computer model to help a subject build an effective ‘mental’ 
model. When is the mental model effective? We suggest two criteria for assessing 
effectiveness of a mental model: when it allows the user to reliably predict the 
consequences of certain stock and flow relations, and when it becomes easier to solve 
a new problem. This fits nicely into our view of the relation between complexity, 
modelling and prediction. 
 
Unfortunately, our experiments so far are not statistically reliable, since we worked 
with only 8 subjects and our results are considered to be ‘anecdotal’, rather than 
‘robust’. Within this limitation (an important one) our experiments suggest that 
subjects trained on computer models were able to transfer their understanding of 
stocks and flows to a much more complex task, represented by running a virtual 
chocolate factory: they controlled the balance between raw material, storage, spoilage 
and production better than subjects with no training in stocks and flows. Their overall 
performance on the management of the factory (overall economic return) was only 
slightly better than for the subjects with no training, which is natural since managing 
stock and flows is necessary, but not sufficient to manage a complex system. Within 
its limitations, principally sample size, this result is encouraging.  
 
As for Sterman’s group, in our experiment we also asked a stocks and flows question 
dressed in two different fashions. One question dealt with CO2 and involved 
accumulation of pollutants (this is the same question as in (Sterman, 2008)), the other 
dealt with fishing and involved subtraction of resources. To our surprise the success 
rate on the second question was much higher than on the first. While this seems to 
contradict some of Sterman results, according to which the way the question is 
formulated does not affect the results, it suggests an avenue for enquiry, since it may 
suggest how a question should be formulated in order to elicit more accurate 
responses. 
 



4.2 Feedbacks   
 
Feedbacks are probably the most distinguishing signature of complex systems and 
their dynamics may be much richer than for stocks & flows. Given the discussion in 
the previous section, it is unsurprising that similar cognitive difficulties are 
encountered by both the general public and professionals in managing a system under 
feedbacks. Moxnes and colleagues (Moxnes, 1998; Moxnes and Saysel, 2009) show 
this in a set of experiments in which subjects, including expects, overexploit a 
resource and as a result misjudge feedback effects. These results are particularly 
important for system management since overexploitation is usually explained by 
greed and competition and the psychology of trade-offs for the individual as in classic 
tragedy of the commons scenarios (Hardin, 1968). Moxnes convincingly shows how 
misunderstanding feedbacks may result in the same outcome (Moxnes, 2000). When 
this happens the consequences of misjudging dynamical complexity are 
misinterpreted as a consequence of social interaction, which may elicit an 
inappropriate policy intervention.   
 
These considerations are confirmed by one of our informal experiments. We 
employed a simple conceptual model of tourism development (Casagrandi and 
Rinaldi, 2002) which describes the relation between environment, tourists and 
infrastructure and allows to study the dynamics of the system under different 
scenarios. The system is characterised by three different types of processes: three 
negative feedbacks, a positive feedback and a unidirectional impact. The subjects are 
asked to intervene on the system to ensure long-term benefit and they need to choose 
which process to target. In this particular case, the positive feedback is one that 
exacerbates negative impacts and so weakening the positive feedback is the key to 
managing the system. Nevertheless, only a small percentage of the subjects chose to 
target the positive feedback loop. In fact, the percentage of subjects correctly targeting 
the positive feedback loop is not distinguishable from random while the percentage of 
subjects targeting the two options which are actually detrimental for the system is 
higher than random; this implies that experts performed on this question at least as 
bad (if not worse) than would someone rolling a dice. 
 

4.3 Toy models 
 
The difficulties subjects faced in dealing with stocks and flows and feedbacks should 
not be confused with what we defined as cognitive complexity. In Section 3  we 
defined as cognitive complexity the challenge posed by dealing with an 
overwhelming amount of information and uncertainty. Neither of these features was 
present in the experiments we discussed in the previous two sections: subjects had all 
the information needed to answer correctly and the amount of information was easily 
manageable.   
 
Nevertheless, there is a sense according to which the poor results on the experiments 
can not be ascribed merely to conceptual difficulties. It is reasonable to believe 
(though it may be useful to test) that most subjects would have succeeded at the 
stocks and flows questions had they been presented to them as ‘how does the amount 
of quantity in a container depend on the difference between what is put in and what is 
taken out?’. Similarly, it is reasonable to believe that they would have succeeded at 



the feedback question had they been pointed out that only one of the feedbacks was 
positive. This suggests that the subjects had the necessary knowledge to answer 
correctly, but failed to apply it; or, said differently, failed to recognise the nature of 
the questions or to cast it within the framework of their knowledge.  
 
We suggest that simple models of dynamical processes can be useful as training tools 
to address this problem, by helping clarify the relation between such knowledge and 
its practical implication. Of course this idea is not novel and is the core of flight-
simulator-like tools available to develop different skills.  
 
In complex system science, ecological modelling, economic modelling and the like, 
models are mostly understood as scenario testing or predictive tools, but there is an 
increasing awareness of their potential as flight-simulators (Smith, 1994; de la Mare, 
2005), training users to fly in the space of management challenges and to land on the 
appropriate strategy. We built some simple prototypes to test their effectiveness in 
addressing the challenges described in the previous sections. One, available at 
http://www.per.marine.csiro.au/staff/Fabio.Boschetti/netlogo/Toy_Models_html.html, 
provides training on stocks & flows problems of increasing complexity, ranging from 
a single stock and a single flow, to 2 stocks and 3 flows, to the inclusion of feedback. 
The user is given a task and can exercise at will, receiving feedback on whether the 
task is achieved. 
 
Another model, available at 
http://www.per.marine.csiro.au/staff/Fabio.Boschetti/netlogo/Casagrandi_Rinaldi_Ma
sstourism.html, reproduces the tourism dynamics model described above and allows 
the user to verify how intervening on different type of feedbacks impacts the system. 
Because this system has very rich dynamics, several system responses can be 
simulated and understood with this tool. 
 
With some effort it is possible to build similar models to address other dynamical 
processes characterising complex systems, like phase transitions, tipping points, 
hysteresis, and oscillations. These could stand for exercise machines in a virtual gym 
for system managers. 
 

5  Facing organisational complexity 
 
As described above, the organisational complexity attempts to describe the network of 
interactions which characterises a system. To a certain extent we are all familiar with 
this concept: when we choose who to invite to a party we account not only for who 
we know and we like, but also for whom the invitees know and like; will conflict arise 
during the party? Will someone not invited find out about the party via hidden links? 
Will someone dominate the party or divide the party into groups? A group of difficult 
friends may make party organising very complex. The art of understanding these 
relations is at the core of political and business success. Thanks to the dramatic rise 
social networking tools like FaceBook and Twitter, the concept of ‘six degrees of 
separation’ and the crucial role of human social networks are now well appreciated.  
 
Often the impact of organisational complexity in complex decision making has a more 
abstract and subtle role and in some cases detecting the interactions among the 



components of a problem is a skill which requires both knowledge and intuition. For 
example, a modeller chooses which processes to include in a model and a software 
engineer decides which software modules communicate with each other and how; this 
demonstrates that the identification of which components and which relations are 
relevant to a problem (and which can be disregarded) is an essential step in both 
problem description and problem solving. These skills can be learnt and to a certain 
extent understanding feedback and stock and flows, as discussed in the previous 
sections, is a first step in that direction. A different body of literature discusses the 
educational potential of training the users in defining the system, rather than 
providing it a priori (Druckman and Ebner, 2008).  
 
Yet another type of challenge lies in imagining the impact of organisation on system 
behaviour, all other factors being the same. We tested this idea by confronting 
subjects with a social dilemma. We modified a puzzle first described in Hofstadter, 
(1985). We asked each subject to imagine being in a live TV game show with other 
participants. Each player is isolated in a cubicle with a button for a few minutes. If 
just one participant pushes his/her button then he/she will receive $1 million. If 
nobody or if more than one player pushes his/her button, no prize is given (we call 
this scenario 1). The question can be changed, by assuming that if no one pushes the 
button the prize is shared (scenario 2). The participants can not communicate during 
the game and we asked them what they should do and why (subjects were exposed to 
either scenario 1 or 2). We then asked participants to imagine the same situation with 
one important change: all participants get together and talk for a few minutes before 
being isolated and having to decide whether to push the button or not (scenario 3). 
The purpose of this test was to see whether the subjects recognised that in all 
scenarios the relation among the players is the same: since they all share both the 
same information and the same likelihood of winning the prize (and thus no 
asymmetry is present among the participants), the decision process should be the 
same for each player in all three scenarios1. Almost all subjects recognised this in 
scenario 3 and proposed to agree on a procedure which would lead to share the prize. 
Most subjects recognised this in scenario 2 and claimed they would volunteer not to 
push the button hoping the other participants would do the same and they would share 
the prize. No one recognised the situation in scenario 1 which resulted in most subject 
claiming they would push the button (quite likely preventing everyone from winning 
the prize) and very few claiming they would not push the button, in order to sacrifice 
their win for someone else’s benefit.  
 
We acknowledge that the ‘optimal’ solution in scenario 1 requires a fairly deep 
insight which may not be available to all subjects and consequently a different test 
should be designed and evaluated. In the current design, the test seems to suggest that 
most subjects recognised the nature of the relation between the players and the 
consequences of an individual’s decision on the system outcome and that they choose 
to act cooperatively when an option was clearly available, while they chose a selfish 
behaviour where options for collaboration were not apparent. More experiments of 
this kind may give insights into the awareness of the consequences of individual 
decisions as a function of group organisations and help developing an intuition for 
detecting such situation in the real world.    

                                                 
1 Scenario 1 is quite challenging to analyse: the ‘optimal’ choice should be for each player to push the 
button with probability equal 1/n, where n is the number of players (Hofstadter, 1985).    



 

6  Facing cognitive complexity 
 
Dietrich Dörner used simulated ‘microworlds’ to investigate human behaviour in 
complex decision-making situations (Dorner, 1996). In these experiments participants 
were given problems to solve in which time delays, unexpected events and counter-
intuitive chains of cause-and-effect were present. For example, participants would be 
presented with the troubles of a fictitious village in which inhabitants have labour-
intensive agricultural livelihoods complicated by human and livestock diseases, water 
shortages, high infant mortality and unpredictable events (e.g. drought periods). The 
participants were asked to make interventions in these systems with the aim of 
improving conditions for the simulated village inhabitants.  Rather than focussing on 
their technical skills in solving the problems, Dörner investigated the cognitive 
processes and behavioural attributes and habits each participant brought to these 
problems. He drew particular attention to the way participants formulated their goals, 
the extent to which they were able to articulate the expected results of their decisions 
and whether they checked the realised consequences against their expectations. He 
focussed also on their emotional responses; for example, were failures greeted with 
humility and curiosity, or anger and blame-shifting? 
 
Dörner’s work made it clear that the individual attributes that a person brings to these 
situations have a significant influence on their ability to make a useful contribution in 
a complex situation. Dörner identified a set of tangible, constructive means to 
improve problem-solving in complex settings. Interestingly, some of the behaviours 
identified by him can be in direct opposition to behaviours rewarded in high-level 
political and management roles. 
 
For example, Dörner suggests that an ability to tolerate high levels of uncertainty is 
highly desirable in complex settings, yet the pressure on politicians and decision-
makers is to remove uncertainty. Politicians find themselves making election 
‘promises’. They are castigated and denigrated when later on in office these promises 
are ‘broken’, yet the political landscape is such that the comforting certainty of an 
election ‘promise’ is a myth. Strong selection pressures at work mean that there is 
unspoken knowledge among politicians and voters alike that promises are uncertain, 
yet the political discourse persists as if it operates in a realm of certainty. 
 
As another example, Dörner makes the argument that individuals are far more 
effective in complex decision-making if they are willing or allowed to acknowledge 
when they make mistakes and treat such mistakes as a valuable opportunities to learn. 
Again, powerful selection processes in workplaces and society at large inadvertently 
lead to mistakes being handled in less helpful ways. In some settings mistakes are 
masked, downplayed or ignored; it is not expected that individuals will purposefully 
draw attention to their mistakes when making a job application or applying for a 
political office, for example. At the other extreme, in the public media mistakes can 
be exaggerated and perpetrators publicly humiliated, with little or no opportunity for 
mistakes to be turned into useful learning opportunities. According to Dorner’s work, 
these behaviours are unhelpful when it comes to negotiating complex problems. 
 



A particularly challenging insight comes from a more abstract problem: participants 
are asked to manipulate arrays of lights to match particular patterns using a set of 
controls which have unknown and complicated effects on the light array. Participants 
were split into two groups: one group was asked to write down at each move their 
hypothesis about the effect each control has on the lights, while the other groups was 
simply asked to “think about their thinking”. In other words, simply reflect upon their 
own thought processes. The self reflection group consistently and significantly 
outperformed the other group. Dörner concluded that ‘thinking about our own 
thinking – without any kind of instruction – can make us better problem solvers’. 
 
Despite good empirical and logical grounds for Dörner’s identified helpful behaviours 
to be actively taught, practiced and fostered, remarkably little attention is given to 
these behavioural attributes in professional training, particularly in more technical 
fields of study such as science and engineering. These personal behavioural attributes 
were not a focus of our study, however we did request participants to complete a self-
evaluation questionnaire and a personality test seeking responses which would 
provide information on these cognitive aspects. 
 
In the self-evaluation questionnaire we asked about the subjects’ aims and strategies 
their assessment of their own performance, any changes they noticed during the 
session and the nature of any obstacles which they confronted when playing the 
Chocolate Factory game. In the personality test, we employed a method proposed by 
Ackerman (Ackerman, 1996) which weights a subject personality according to four 
main traits: social, artistic, traditional and logical. The purpose of the self-evaluation 
and personality questionnaires was to see whether any obvious correlation could be 
found between learning and performance on the models versus a priori personality 
type and attitude in terms of level of confidence.   
 
As discussed above, our results do not carry statistical significance due to the low 
sample size, but some interesting trends are suggested: 
 

1) the personality traits, as detected by the Ackerman test, predict reasonably 
well the subject’s performance on both the stocks & flows model and the more 
complex task of managing the chocolate factory.  

2) the personality trait’s ability to predict performances on the chocolate factory 
task is less pronounced after training on the toy models; this suggests that the 
toy models training resulted in some learning which partly compensated for 
possible a priori personality difference. 

3) No correlation was found between self-confidence, self-esteem and self-
evaluation on one side and performance on another: the subjects’ expectations 
of their own performance before the task and the subjects’ evaluation of their 
own performance after the task did not show correlation with the actual 
performance. This also seems to be at odds with the stereotypical expectation 
that self-confidence is a desired trait for leadership.   

 

7  Discussion 
 
In a world of ever expanding demands on limited resources, wise decision making in 
complex situations is crucial not only for economic and other managerial purposes but 



also for the welfare of humans and the environment. This is true not only for the few 
in positions of power but also for the general public who have to decide what 
initiatives to support and how to do so. 
 
Scientific research can contribute to understanding how such decision making is 
carried out, how effective it is and what factors influence it. This contribution can be 
at least as important as more (apparently) sophisticated research in complex 
modelling of physical and ecological processes. It is so for at least two reasons: first, 
because the earth system has reached a state in which human impact is now a main 
driver for global environmental change (Rockström et al., 2009); second because very 
sophisticated scientific understanding and planning can be made irrelevant by 
misjudging simple crucial processes at pivotal decision making moments. The 
evidence we discussed in this paper, according to which even experts and scientists 
are prone to gross mistakes in simple qualitative judgement of dynamical processes, 
only adds to this concern.  
 
Our work and the body of literature we discussed suggest two areas for further 
research. First, computer models can be designed to train individuals to better 
understand the basic processes at the core of complex systems. These models 
resemble flight simulators in the purpose and can be designed to cover a variety of 
scenarios of real world significance for decision making, including management of 
limited resources, unexpected feedbacks and social dilemmas. Our initial results with 
this approach are encouraging and indicate that it is worth developing a suite of 
training models covering a wide range of scenarios which are known to present 
cognitive challenges to human understanding, to test them more fully. 
 
It is also reasonable to question the currently accepted view of what makes an 
effective manager or an effective decision maker. Introspection, self-criticism, ability 
to tolerate uncertainty, acceptance of own mistakes and willingness to learn from 
them, curiosity to unravel causal relation and ask ‘why’ questions rather than aiming 
straight at ‘what’ actions to take, patience in searching for evidence and counter 
evidence, are not features which are stereotypically searched for in leaders. However 
the literature, and more modestly our initial results, seem to indicate that these are 
essential for addressing complex questions. More widespread awareness about what 
makes an effective decision maker, possibly leading to improvements in training 
programs, may have an immense impact on a wide variety of real world issues.    
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